
UDC 539.3 

DOUBLY-PERIODIC PROBLEM OF THE THEORY OF ELASTICITY FOR AN ISOTROPIC 

MEDIUM WEAKENED BY CONGRUENT GROUPS OF ARBITRARY HOLES 

PMM Vol. 36. IG4, 1972, pp.682-690 
L. A. FIL’SHTINSKII 

(Novosibirsk) 
(Reveived December 6, 1971) 

We consider the general doubly-periodic problem of the theory of elasticity 
for an isotropic medium when within the limits of the period-parallelogram 
we have a group of nonintersecting arbitrary holes. The problem reduces to a 

Fredholm integral equation of the second kind whose solvability will be proved. 

We consider also the problem of reduction for an anisotropic doubly-periodic 
lattice. 

One of the doubly-periodic problems has been studied for the first time in 
[l]. Various classes of doubly-periodic problems in the extension and bending 

of lattices have been considered in p]. Doubly-periodic problems when within 
the limits of the period-parallelogram there exists one hole of a general form 
are studied in [3, 41. A lattice with groups of congruent circular holes has been 

studied in [S]. The solution of a series of doubly-periodic problems for physi- 
cally nonlinear and also for anisotropic media have been given in [S-8]. The 

elasto-plastic problem for a regular isotropic lattice with circular holes has 
been studied in [9]. The general doubly-periodic problem for anisotropic me- 
dia has been studied in [lo], while the general formulation of the reduction 
problem for lattices is given in [ll]. 

1. Let co1 and 02 (Im o1 = 0, Im ( co,/ 0,) > 0) be the fundamental periods of 
the lattice. We will assume that within the limits of each period-parallelogram there 

exists a group of k nonintersecting holes of general form and that these groups are con- 
gruent with each other. 

Let L$, (i == 0, 1, . . . . k - 1) be the contour of the jth hole in the fundamental 

period parallelogram, 1,,,, = U Loo’, L = IJ I,,. We denote by U the domain occu- 
pied by the lattice, the boundary of 
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the domain is the totality of all LI,,, i. e, L. We 
assume that Louj (j = 0, 1, . . . . k - 1) is a 
simple, smooth, closed contour. The finite con- 
tinuum bounded by the curve L&, is denoted by 

0:s (Fig. 1). 

Fig. 1 

By the first fundamental doubly-periodic prob- 
lem for the described lattice we understand the 
boundary value problem regarding the determi- 
nation of the stresses in D, when the same load 

acts on each of the congruent contours while 
within the limits of the period-parallelogram 
we have the mean stresses s, , S2 and sis (Fig.1). 



The mean stresses on the areas perpendicular to the coordinate axes are expressed in 

terms of S,, Sz and S12 with the aid of the relations 

a,sin a = S, + 2S12 20s a f- S2cos2a,t =S12+S2cosa,a, = S”Lsina(l.l) 

The principal vector of the external loads on ~$0 (i = 0, 1, . . . , k - 1) is taken to 

be equal to zero. Under these conditions the distribution of the stresses in the lattice 

has a doubly-periodic character. 

It is convenient to represent the Kolosov-Muskhelishvili functions q (z) and 9 (z), 

which describe the states of stress and strain in the lattice, in such a way that they should 

reflect the doubly-periodic character of the problem. This can be suitably done by a 

modification of the known integral representations given in [ 121. 

By assumption Cp (z) and 20’ (2) -/- ‘Ic, ( z must be quasi-periodic functions. There- ) 

fore we can write for cp (2) 
k-l 

Cp (2) = & 5 0 (t) 15 (t - 2) - 5 (t)] dt + 2 bjc (2 - zj) + AZ (1.2) 
loo j=o 

Here 5 (z) is the Weierstrass zeta function, 6~ (t) is the desired density, Zj E DooJ 

(z. = 0), the constants bj are some functionals which will be given below. In (1.2) the 

integral term represents a quasi-periodic function, Integrals of this type have been stu- 

died in p3, 341. A systematic investigation of the theory of integrals of the Cauchy 

type with automorphic kernels is contained in p5]. 

The structure of the function $ (z) is more complicated and for its construction we 

need, besides the integrals with kernels of the type of Weierstrass’ zeta functions, some 

special integrals with regular kernels. We introduce the function [ll] 

This meromorphic function satisfies the following relations at the congruent points : 

[‘I(; + (OJ - (‘1 (z) = qp (s) + Tl (1 .G) 

f’i (Z -t_ C02) - f’i (Z) = &p (z) + 7s 

Here F (z) is the Weierstrass elliptic function while 1’1 and :‘z are known constants ul]. 
We write down the representation for the function I# (z) whicn satisfies the required 

conditions 
(0 (t) Z) [j (t - Z) - 5 (t)] - 

I “0 

k-1 

I 
“ni \ 0) (t) \Tp (t - 5) - p1 (t - z)l dt + 2 bj 15 (5 - ;J + Pl (2 - z;)l -r Bz. --- 

loo 
j=O (1.5) 

The constants bj,which occur in the representations (1.2) and (1.5) are determined in 

the same way as in [12], except for an unessential change in the formulas 

bj = & \ {w (t) 02 - (I) (t) dt}, j=O.l,...,h--1 (1.6) 

& 

The representations (1.2). (1. 5) guarantee the quasi-periodicity of the functions rp (z) 

and 2~ (z) $- $ (z). Indeed, from (1.2), taking into account the quasi-periodicity of 

the Weierstrass zeta function, we obtain 
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‘P (z + 0,) - cp (z) = Am, + bb, v=i,2 

Then, by virtue of the periodicity of cp’ (z), we have 

645 

(1.7) 

Substituting into (1.8) the functions cp, cp’ and -+ from (1.2) and (1.5) and taking into 

account relation (1.4) we find 

1%’ (z> + IJ (z)l I:+O” = A& + Bm, - ah, + brv, v=i,2 

a=&\O(t)dt (1.9) 

Formulas (1.7) and (1.9) prove the stated assertion. 
We consider now the static conditions from which it is necessary to determine the 

constants A and B which occur in (1.2) and (1.5). We introduce the function 

g (2) = cp (4 + w’ (4 + * (4 (1.10) 

The principal vector of the forces acting along the arbitrary arc AB within the limits 
of the period-parallelogram, is given by the relation [16] 

X + iY = - ig (z) If: (1.11) 

We have, taking into account (1.1) and (1. lo), the static conditions 

g(2 + 61~) - g(z) = i(S, -1- S12eiX) (02 I (1.12) 

g (Z + q) - g(z) -= - i(,C,, + S2ei”)ol 

Computing the increment of the function g (z) in the congruent points, we arrive, by 

virtue of (1.7) and (1.9) to the following equations relative to the constants A and B: 

(A + A) (01 T 
-- -- _~. 
Bo), + 6,b + y,b - a 6,= - i,a, (S,, + S2eix) 

(A -+. 2) up -+ &f d2b + T2b - a z2= i 1 a2 1 (s, + S,,ei”) (1.13) 

[6,w, - 6,0, = 2ni, Tz911 - T1”‘2 = s,w, - d,fTJ 

The relations (1.13) contain four real equations relative to three unknown constants 
Re A, He B and Im B. Multiplying the first of Eqs. (1.13) by o2 and the second one 
by or and subtracting them one from the other, we obtain, by taking into account the 

relations [ll] given between the square brackets in (1.13), the expression for the con- 
stant B 

(1.14) 
B =; !!-.I$! b - F Re b - (g - g) Ke a - & (S, f 2S12etiZ + L‘?2e+2ia) 

Here s = o1 Im 0s is the area of the period-parallelogram. Similarly, multiplying 
the first of Eqs. (1:13) by 0s and the second one by Gr and subtracting them one from 
the other, we find 

ReA= -_Re(bs,)-i_XSReb+~Rea+~~(S’+2~~,acos3+S,)(1.15) 

The compatibility condition of the equalities (1.13) is the relation 
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Ima=O (1.46) 

By virtue of (1.9) the condition (1.16) takes the form 

Re [ o(t)%=0 
t 

loo 

(1.17) 

Thus, under the condition (1.17), the representations (1.2) and (1.5), with the constants 

Re .d and B defined by the formulas (1.4) and (1.15). ensure the presence in the lat- 

tice of the given mean stresses S,, ,!?a and St, and, consequently, they guarantee the 
vanishing of the principal vector and the principal moment of all forces acting along 

the boundary of the period-parallelogram. Obviously, the quantity ]m A remains arbi- 

trary. 

2, The boundary condition of the first fundamental problem has the form [IS] 
-- 

f(t) = i s (X, + iY,,) dS, Ci, = C,’ + C,m + DOn, m, J~=O, +- 1, $:, . . . 
to 

where X,, Y, are the components of the load given on I,, , t E I,,. Following p2], 
we define the constant Ci,, by the formula 

&oj = - 
s 

o(t) dS (2.2) 
LOB 

Passing to the limiting values in (1.2), (1.5) by making use of the Sokhotski-Plemelj 

formulas and substituting them into the boundary condition (2.1). we obtain after some 

transformations a Fredholm integralequation of the second kind relative to the density 

o(t) 
1 

0) (to) + Z o(t> {cl (t - to) - (2.3) 

-b - to) 5 (t L- to)} + n/r (0 (t), to} = F* (to) 

-- 
M{a(t),t~l=& \ o(t)5(t)dt+kibj(2ReG(to-zj)+ 

Lw j=o 

+ p1 (to - zj) - top (to - zj)] + to 
I 
F Re b - $ Re (b6,) + + Re a} i- 

F* (to) = f (to) - - 2 syn a (S, + 2S,, cos a + S,) + &a (Sl+ 2S1Ze+ia + Sze+2ia) 

where U(Z) is the Weientrass sigma function and & (z) is determined by the relations 

51’ (z) = - Plbh Cl(O) = 0 (2.4) 
Thus, the problem reduces to the solving of Eq. (2.3) under the additional condition 

(1.16). We can eliminate the additional condition by adding the expression nit,Im u/S 
to the left-hand side of Eq. (2.3). Then every solution of the obtained modified equa- 
tion will be also the solution of Eq. (2.3) satisfying (1.16) provided that the principal 
moment of the forces given on I, is equal to zero. Indeed. replacing in (2.3) the term 
M (O (t) , to} by the expression M{ o (t), to}+ nit, Im 6/S, multiplying the equation 
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thus obtained by dt, and integrating it along the contour lo,,, we obtain, interchanging 
if necessary, the order of integration, 

k-l 

2i Im {$$ \ Z, \ 
< 

, U(t)c(t - t,)dt - + 1 (,,(t)t f- 2 bj [ c(t - Zj)Z} + 

lc4 Lx Lx7 
j=o loo 

Since 

+(2iReA-+irni)) 1 (y&r-eddy)= 1 f(t)8 (2.5) 
loo bl 

s (YdJ:--&/)#O 
loo 

and since all the expressions in (2.5), except the term containing Im a, are pure ima- 

ginary quantities, we arrive at the required result. 

3. Let us prove that the integral equation 

1 
0 (4 + 2ni c i o (t) d In 

i, 
$-$z}+&{ ad{t;l)- 

200 

- (t - lo) 5 (t -to)) + M {co (t), &I} -t F Im 5 = F* (to) (3.1) 

is always solvable. To this end, we consider the homogeneous integral equation corre- 
sponding to Eq. (3.1) for F* (to) = 0. Obviously, for F* (t) = 0 it is necessary and suf- 
ficient that we have the conditions 

s, = s,, = s, = 0, f w = 0 

Thus, the homogeneous integral equation corresponds to the first fundamental problem 

of the theory of elasticity in the case of a zero external load. 

We denote the solution of the homogeneous integral equation by o,, (t). All function- 

als and functions which correspond to this solution will be assigned a zero as an upper 
or a lower index. 

We have, according to (1.2) and (1.5) 

s k-1 

00 (‘1 [C (t - Z) - 5 (‘I] dt + 2 ‘job (2 - Zj) f ‘$2 
100 j=O 

,M=&$ (oo(t)dt+ 00 (t) G) [5 it - 2) - 5 (q] - (3.2) 

c k-l 

-- 2& i 00 (t) [Sp(t - t)-PI (t-z)] dt + 2 'j" [C (2 -zj) f Pr (’ - ‘j)I f B~z 
00 j=O 

The boundary condition for the functions ‘pO (z) and q0 (z) acquires, according to (2.1) , 
the form 

90 (t) + Q’o’ (r) + &$= Boj (3.3) 
n 

Boj = - j,coo(t)ds, j=O, 1,. . ., k-l 

LO3 
Consequently, ‘p,, (z) and I$,, (z) describing the first fundamental problem for zero exter- 
nal forces, can be represented in the form 

‘PO (2) = i&Z + c, & (2) = - f7 (3.4) 
In addition 

B& = c - d, j = 0,1, . . ., k - 2 (3.5) 
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Comparirzg the corresponding increments of the iunctions from ($2) and (3.4) at con- 
gruent points, we arrive at the equalities 

no = 
1 

ie, Bo= 0, ao= ni 
$ &(t)dt=O, bl-;& 

c 
{oo&- oodt -Go dtj ==o . (3.6) 

lm, rB8 

By virtue of (3.6). (3.4) and (3.2) we can write 

s k-l 
1 

2ni a0 (4 K (t - 4 - 5 (t)] dt t_ -j-J bj”G (2 - Zj) -c = 0, ZED 
km ti=o 

~~egrat~~g by parts in the second of the relations (3.7) and taking imo account Cauchy’s 
formula for each quasi-periodic function F(a) with given cyclic weights u, and as p4] 

we can represent relations (3.7) in the form 

Here 

Evaluating the difference of the limiting values of the integral in (3.9). we find 
Ii-1 

ia- =t icp* (f) = 00 (t) f 2 hjOj (t - q - c (3.12) 

j=O 

It follows from here that the expression in the right-hand side of (3.12) is the boundary 
value of the functions ilp*(z) “regular in the domains .&M~ (j = U,i,..., k -- 1) . 

If we substitute the expression for oO (t) from (3.12) into the formula for Q (z) from 
(3.X1), we obtain Q (z) G 0. In this case we have 
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k-l 

iy-(t) = i+,(t)= 00 (t) - too' (t)+ 2 bjoC (t - 'j) + e (3.13) 
j=o 

i.e. the right-hand side of the formula (3.13) is the boundary value of the functions 

il)+ (z) , regular in Dooi(j = O,i,..., k - i).Eliminating, as usual, o. (t) from (3.12) and 
(3.13), we arrive at a functional relation on Zoo 

k-l 

v* (t) + iq*'(t) + $* (t) = i 2 bj” [c (t - Zj) - 5 (t - Zj) +?P(t - Zj)] -i G + e) (3.14) 

j=0 

We multiply (3.14) by dt and we integrate along each of the contours L#, (m = O,l, . . . 
k--l). Taking into account that qz (t) is the boundary value of the function +* (z) 
regular in Doo'" , we obtain 

k-1 

S (cp,(t)dt-_cp,(t)~~=--2nb~+i ~ bjo S [5(‘-Zl) dt+5(‘-zj)dt] 

Lm j=O 
00 Lm 00 

From here we obtain the equalities 

bm= 0, m = 0,1,..., k - 1 (3.15 j 

Condition (3.14) acquires the form 

rf* (r) +&*’ (r) + $* (t) = - i (e Se) (3.16) 

Consequently, the functions r+++ (2) and wt (z) solve the first fundamental problem of 

the theory of elasticiq for the domains Do& (j = 0,1,..., k - 1) for a zero external load. 

We have 
‘p* (z) = iejz + cj, S*(z)=-~j, i=O, 1,. . ., k-l (3.ii) 

The constants ci, dj and e $ c are connected by the relation C, - di - i (c + 6) = 0. 

Expressing o. (t) from (3.12) and (3.17) we obtain 

O0 (t) = tej - C - iCj (3.18) 

Substituting o. (1) from (3.18) into the equality (3.15) and (1.6) we have 

e; = 0, j = 0,l ,..., k - i (3.19) 

From the formulas (3.9). (3. lo), (3.15). (3.18) and (3.19) we obtain the equalities 

Ci= dj= 0, e+‘c=O, j = 0,l ,..., k - 1 (3.20) 

Finally, using (3.5), (3.18). (3.20) and the fact that the constants BOf in (3.3) are inde- 

pendent of the index i, we obtain c = d = 0. Thus o,, (t) = 0 and the integral equa- 
tion (3.1) has a unique solution. 

4, We proceed now to the solving of the reduction problem for the generalized lattice 

under consideration. The meaning of this problem consists in the determination of the 
macroscopic elastic parameters of the lattice from the condition that the rigidity of the 

lattice under extension should coincide with the rigidity of some continuous anisotropic 
medium. According to the general formulation of the problems of this kind [Ill, it is 
necessary to identify the corresponding increments of the displacements in the congruent 
points of the lattice and in the continuous anisotropic medium. 

Below we will consider only lattices which are symmetric with respect to the coordi- 
nate axes. The fundamental periods are taken in the form 

(11s = iH, Reoi = 0 Imw, = 0 (a = n/2) (4.1) 
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We introduce the notation 

h(z) = 2G (u + iu) = xrp (2) - zcp’o - S) (4.2) 

where u and u are the components of the displacement vector in the lattice and G is 
the shear modulus of the material of the lattice. 

On the basis of formulas (1.7) and (1. 8) we find the increments h (z) in the congru- 
ent points 

Q1 = (x + 1) (Aa, + &) + (iz - oz) 01 (4.3) 
8, = (x + 1) (Au, + bB,) - i (ol sin a - ze+ - iq cos a) 1 co2 J 

Equating the increments (4.3) with the corresponding increments of the function h (2) 

in the continuous orthotropic medium for the same mean stresses at, 0 e and 7 =0, 
we obtain a system of relations for the determination of the macroscopic elastic para- 

meters El*‘, EZ*, pL1*, p2* 

(x + 1) (Ao, + hd1) - 6ZOl = & b1 -g:*51 01 (4.4) 

tx + 1) (AU, + b&J - isI 1 w2 1 = & ( ” -E~~*62 Re o2 $ i ‘a >:*‘I Im 02) 

According to (1.14) and (4. l), we can write 

Introducing the notations 

Pl * = PllOl + P&% pz* = Pzl~l+ Pzz@Jz 

and noting that the rigidity of the lattice does not depend on the mean stresses a,, ua, 

we obtain from (4.4) 

El* 
- = (1 + 4PlJ1, E 

Jg = (1 + 4&-l 

&PI* 
- = p - 4p,,, 

Ep2* 

El* 
Ea* = fL - 4P*1 

The solvability condition of the problem of the reduction of a symmetric lattice to 

an equivalent medium is the equality pra = par. In a similar way we can determine 
the macroscopic modulus of the second kind G*. 
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